侵权投诉
当前位置:

OFweek医疗科技网

正文

人工智能高效诊断疾病,机器人医生离我们还有多远?

导读: 近日,广州市妇女儿童医疗中心基于深度学习开发出一个能诊断眼病和肺炎两大类疾病的人工智能系统,这项研究成果以封面文章登上了2月23日的世界顶级期刊《细胞》。

近日,广州市妇女儿童医疗中心基于深度学习开发出一个能诊断眼病和肺炎两大类疾病的人工智能系统,这项研究成果以封面文章登上了2月23日的世界顶级期刊《细胞》。

这项人工智能成果能够根据影像资料,给医生提出诊断建议,并解释判断的依据。比对实验发现,该系统在诊断眼疾时的准确率达96.6%;在区分肺炎和健康状态时准确率达92.8%,这种水平足以与有十几年经验的专家医生相媲美。

本领有多大|精准用药,秒级判定

肺炎是全世界儿童因感染导致死亡的首要原因。从一张胸部CT上找到肺结节,一名经过训练的医生平均需要3-5分钟,而依靠人工智能则仅需要3-5秒。

这就是由张康教授领衔的广州市妇女儿童医疗中心和加州大学圣地亚哥分校课题组研发的人工智能平台。

不光是快,更重要的是准。决定肺炎预后的关键因素是能否根据肺炎的病原学类型精准用药。传统的基于血培养、痰培养、生化检测等方法,很难快速准确判断。而人工智能平台则可以基于儿童胸部X线片实现儿童肺炎病原学类型的秒级准确判定。

这就实现了用人工智能精确指导抗生素的合理使用,而且该平台可以不受医院级别和区域的限制,实现社区医疗、家庭医生、专科医院的广覆盖,为肺炎这一抗菌素滥用重灾区提供精准用药方案,避免抗菌素滥用,促进儿童重症肺炎康复。

人工智能平台具有重要的临床意义,人们期待效率更高、精准度好的人工智能成为医生的好帮手。在诊前疾病的筛查、预防,就诊时医疗图像辅助诊断、检验结果分析、手术辅助以及就诊后的医疗随访、慢性病监测、康复协助、健康管理等方面,人工智能都将有所作为。甚至会为基础科研辅助、药物研发、基因筛选分析、医疗培训等带来改变。

“现在我们的人工智能平台可以不受人员不受区域的限制,在世界任何地方让更多的患者早发现、早诊断、早治疗。”2016年加入广州市妇女儿童医疗中心基因检测中心的加州大学圣地亚哥分校Shiley眼科研究所教授张康说。

值得信任吗|准确度高,过程可见

有人说,人工智能看病靠谱吗?把身家性命交给机器人,放心吗?

研究团队从黄斑变性和糖尿病视网膜黄斑水肿这两种疾病切入,让这一人工智能系统不停地学习眼部光学相干断层扫描图像。在学习了超过20万病例的图像数据后,该平台诊断黄斑变性、黄斑水肿的准确性达到96.6%,灵敏性达到97.8%。与5名眼科医生诊断结果相比,确认平台可以达到训练有素的眼科医生的水平,并在30秒内决定病人是否应该接受治疗。

记者了解到,这套人工智能系统具有深度学习能力。人们所熟知的AlphaGo、自动驾驶等应用,都是基于深度学习技术开发的。

在此项研发过程中,课题组应用了基于迁移学习模型的新算法,既大幅提升了人工智能的学习效率,又有利于实现“一个系统解决多种疾病”的目标。

“传统的深度学习模型一般需要上百万的高质量同类型的标注数据才能获得较为稳定和精确的输出结果,但现实中给每种疾病都收集上百万张高质量的标注图像几乎是不可能实现的,使得人工智能在医学影像学领域的病种广覆盖很难实现。”张康介绍。所以,目前已有的医疗人工智能一般一个系统只能针对一种疾病。

相对而言,这项基于迁移学习模型的人工智能平台所需的数据量极少,研究者只需要几千张就可以很好地完成一次跨病种迁移。

例如,在本研究中,课题组在20万张眼部图像数据训练出来的人工智能系统基础上,只用了5000张胸部X线图像,就通过迁移学习构建出肺炎的人工智能图像诊断系统,实现了儿童肺炎病原学类型的差异性分析和秒级判定。经检测,它在区分肺炎和健康状态时,准确性达到92.8%,灵敏性达到93.2%;在区分细菌性肺炎和病毒性肺炎上,准确性达到90.7%,灵敏性达到88.6%。

1  2  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

技术文库

  • 医疗器械
  • 器械研发
  • 器械销售
  • 猎头职位
更多
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码: