侵权投诉
当前位置:

OFweek医疗科技网

生命科学

正文

人工智能预测心脏病发作:准确率高于人类医生

导读: 包括美国心脏病协会在内的很多机构使用年龄、胆固醇水平、血压等8到10项指标来预测患者的心脏病发作风险。

医生有很多工具和方法预测患者的健康隐患,但仍无法百分百应对人体的复杂性,心脏病发作就是最难预测的情况之一。英国研究人员最新报告说,他们研发了一种人工智能系统,让计算机通过“自学”各种医学指征和数据来预测患者的心脏病发病风险,准确率高于人类医生。

美国心脏病协会的统计数据显示,全球每年有近2000万人死于心梗、中风、血管堵塞等心血管系统疾病。包括美国心脏病协会在内的很多机构使用年龄、胆固醇水平、血压等8到10项指标来预测患者的心脏病发作风险。

人工智能预测心脏病发作:准确率高于人类医生

英国诺丁汉大学研究人员在美国《科学公共图书馆·综合》杂志上报告说,影响人体健康的因素很多,人体各系统的相互作用也十分复杂,计算机科学可以帮助医务人员探索这些因素之间的关联。在他们开发的人工智能系统中,计算机使用了4种机器学习方法,分析英国近38万名患者的电子医疗记录,寻找心脏病发病模式。

据介绍,人工智能系统首先进行自我训练,使用78%的患者数据来寻找发病模式并构建自己的诊断指导系统。接下来,系统用剩余22%的医疗记录对自己进行测试:先用2005年的数据进行学习归纳,然后预测此后10年内哪些患者会首次患上心血管疾病,最后使用2015年的记录检查预测结果。

结果显示,4种机器学习方法预测心脏病发作的准确率全部优于传统医生诊断标准。美国心脏病协会预测指导方针的准确率在72.8%,而4种人工智能方法的精确度在74.5%到76.4%之间。其中准确率最高的一种机器学习方法还降低了一定的错误预警率,相当于在8.3万名患者中额外挽救了355人的生命,因为错误预警诊断可能会让本不需要服用降低胆固醇药物的人服药,滥用药物同样对人体有害。

1  2  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,除OFweek官方账号外,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

  • 医疗器械
  • 器械研发
  • 器械销售
  • 猎头职位
更多
X
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码: